
Concurrency In The Erlang VM
Erlang is often referred to as the 

“concurrency oriented 
programming language”. 

How did it get this name? How can 
a language created in the 80s for 

the telecom industry help us now?

Swaathi Kakarla
@imswaathik

https://twitter.com/imswaathik


The Plan

How does the 
OS process 

instructions?

OS Models

How can 2 
programs be 

executed?Execution

How is a program 
executed?



The Plan

Getting our hands 
dirty with Elixir.

Demo

Coronavirus 
will end…. 
maybe?

Extended 
Topics

So much more to 
learn! So little 
time to do it.



whoami

Swaathi Kakarla

CTO, Skcript
Guest Author

ROR Contributor
Yoga Practitioner

https://www.skcript.com/


1. Obviously uses the CPU.
2. The CPU executes processes.
3. Processes are isolated blocks of execution. It occupies memory, it has a stack and heap, it is able to 

context switch.
4. Threads are “lightweight” processes.

1. The CPU does not process multiple processes at a time. It processes small bits of multiple 
processes sequentially, switching over so fast that it “looks” like it is processing in parallel.

2. Context switching is expensive!

1. Moore’s law: The number of transistors on an affordable CPU would double every two years.
2. Unfortunately we’ve hit a bump in the road, we’ve reached the upper limit of the Moore’s law.
3. Now it makes sense to scale horizontally, instead of vertically. Hence “cores”.
4. This happened when we realized going much higher than 4GHz is very difficult and futile. Speed of 

light actually became a constraint.

How does the OS process instructions?

https://en.wikipedia.org/wiki/Process_(computing)
https://www.theverge.com/2018/7/19/17590242/intel-50th-anniversary-moores-law-history-chips-processors-future
https://www.quora.com/Why-do-we-need-multiple-cores


An OS Process



Execution

Sequential
Start executing process B, 

only after process A is 
complete.

Concurrency
Break up process A and B, 

switch between them 
really fast.

Parallelism
Execute both process A 

and process B at the 
same time.



Sequential Processing



Concurrency



Parallelism



Concurrency Models

SM
Shared Memory 
model used by Java 
and C#.Actor

Actor model used by 
Erlang and Rust.

CSP
Communicating 
Sequential Process 
model used by Go.



Shared Memory



Actors



Communicating Sequential Processing



Actor Model

Create
Create more actors (these are 

not child processes).

Send
Send messages to other actors.



Actor Model

Designate
Designate what to do with the next message. It basically means 

defining how this state will look like for the next message it 
receives. Or, more clearly, it’s how actors mutate state.



The Actor 
Model in 5 
Min
Because a picture is worth a 1000 
words, and a video so much more.

http://www.youtube.com/watch?v=ELwEdb_pD0k


So.. Erlang?
Erlang is so great at 
concurrency because of BEAM.

Beam me up Scotty….? No!

BEAM is the Erlang VM. It 
schedules lightweight Erlang 
processes. Erlang processes, 
not OS processes.





01
BEAM

Lightweight Erlang threads 
and scheduling.

Actor Model
Message passing and isolated 

processes.

02

Distributed
Scale horizontally and make 

use of all cores.

03
Fault Tolerance

Failure at one node does not 
affect other nodes.

04



Also...

Supervisor
Just like a real life 

supervisor.

GenServer
Used to keep state, execute 

code asynchronously.

...
I wish I knew this one to 
make this slide balanced.

No GIL
Global Interpreter 

Lock

Immutability
Not mutable?

Compiled
Hence the VM!



Demo time!
Let’s have a look at how 
Erlang processes 
communicate with each other, 
are fault tolerant, distributed 
and so much more!



● https://www.knowthen.com/elixir-and-phoenix-f
or-beginners

● https://stackoverflow.com/questions/2708033/t
echnically-why-are-processes-in-erlang-more-e
fficient-than-os-threads

● http://dockyard.com/blog/2020/05/28/scaling-up
-with-elixir

● http://ablogaboutcode.com/2012/02/06/the-ruby
-global-interpreter-lock

● https://tsh.io/blog/simple-guide-concurrency-no
de-js/

● https://www.poeticoding.com/spawning-proces
ses-in-elixir-a-gentle-introduction-to-concurrenc
y/

● https://www.poeticoding.com/hey-process-ther
e-is-a-message-for-you/

● https://www.brianstorti.com/the-actor-model/
● http://blog.plataformatec.com.br/2018/04/elixir-

processes-and-this-thing-called-otp/

● Zen of Erlang
● Gary from Android Authority: Process and 

Threads
● Concurrency in a Go Coffee Shop
● Hewitt, Meijer and Szyperski: The Actor 

Model

Resources

https://www.knowthen.com/elixir-and-phoenix-for-beginners
https://www.knowthen.com/elixir-and-phoenix-for-beginners
https://stackoverflow.com/questions/2708033/technically-why-are-processes-in-erlang-more-efficient-than-os-threads
https://stackoverflow.com/questions/2708033/technically-why-are-processes-in-erlang-more-efficient-than-os-threads
https://stackoverflow.com/questions/2708033/technically-why-are-processes-in-erlang-more-efficient-than-os-threads
http://dockyard.com/blog/2020/05/28/scaling-up-with-elixir
http://dockyard.com/blog/2020/05/28/scaling-up-with-elixir
http://ablogaboutcode.com/2012/02/06/the-ruby-global-interpreter-lock
http://ablogaboutcode.com/2012/02/06/the-ruby-global-interpreter-lock
https://tsh.io/blog/simple-guide-concurrency-node-js/
https://tsh.io/blog/simple-guide-concurrency-node-js/
https://www.poeticoding.com/spawning-processes-in-elixir-a-gentle-introduction-to-concurrency/
https://www.poeticoding.com/spawning-processes-in-elixir-a-gentle-introduction-to-concurrency/
https://www.poeticoding.com/spawning-processes-in-elixir-a-gentle-introduction-to-concurrency/
https://www.poeticoding.com/hey-process-there-is-a-message-for-you/
https://www.poeticoding.com/hey-process-there-is-a-message-for-you/
https://www.brianstorti.com/the-actor-model/
http://blog.plataformatec.com.br/2018/04/elixir-processes-and-this-thing-called-otp/
http://blog.plataformatec.com.br/2018/04/elixir-processes-and-this-thing-called-otp/
https://www.youtube.com/watch?v=4ZIPijEqrNI
https://www.youtube.com/watch?v=h_HwkHobfs0
https://www.youtube.com/watch?v=h_HwkHobfs0
https://www.youtube.com/watch?v=jJS6G7irZSc
https://www.youtube.com/watch?time_continue=60&v=7erJ1DV_Tlo&feature=emb_logo
https://www.youtube.com/watch?time_continue=60&v=7erJ1DV_Tlo&feature=emb_logo


CREDITS: This presentation template was created by SlidesGo, including icons by Flaticon, 
infographics & images by Freepik and illustrations by Stories.

Thanks!
@imswaathik

www.skcript.com

www.swaathi.com/talks

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://twitter.com/imswaathik
http://www.skcript.com
http://www.swaathi.com/talks

